笔笔范文网 >培训计划

人教五上数学教案通用7篇

写教案时,我们注意要结合教学期间的疑难点展开写作,在日常的教学活动中,教案起到十分重要的作用,下面是笔笔范文网小编为您分享的人教五上数学教案通用7篇,感谢您的参阅。

人教五上数学教案通用7篇

人教五上数学教案篇1

教材分析

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

学情分析

由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

教学目标

知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

教学重点和难点

重点:教师引导,动手操作得出求圆柱表面积的方法。

难点:计算方法在生活中的应用。

教学过程

一、复习导入:

1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

2、圆面积怎样求?

3、长方形的面积呢?

二、创设情境,引起兴趣:

出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

三、 自主探究,发现问题。

1、分组,讨论:

(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

圆柱的侧面剪开发现侧面是一个长方形(正方形),

侧面积=长方形的面积=长×宽=地面周长×高。

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

(2)、复习引导:(用旧解新)

上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

(3)、小结:小组讨论,将公式延伸。

圆柱表面积 = 圆柱的侧面积+底面积×2

=ch+2π r2

=πdh+2π r2

2、知识的运用:(回到情景创设)

(1)、出示例题:

例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

(2)、独立试做:

(3)、集体讲评。

(4)、讲解进一法。

3.巩固练习:

四、课堂总结:

这一节课重点学习了圆柱表面积的计算方法及运用。

人教五上数学教案篇2

教材及学情简析:

本节课认识圆柱是在学生学习了几种平面图形以及长方体和正方体的基础上进行教学的,学生已具备了一定的空间观念。圆柱又是一种比较常见的立体图形,在实际生活中,圆柱形的物体很多,学生对圆柱都有初步的感性认识。因此,教学时可以从直观入手,帮助学生形成圆柱的正确表象,让学生通过观察、想象、操作、推理、讨论等活动,认识圆柱的底面、侧面和高,掌握圆柱的特征,探索圆柱的侧面展开图,进而发展学生的空间观念,引导学生学会从数学的角度去关注生活中的现象或问题。

此外,该学段的学生已具备了初步的独立解决问题的能力,教学时可以充分发挥学生的自主性,合理运用学习方法,指导学生通过看书自学、动手实践、合作交流等方式获取数学知识。

教学目标:

1、帮助学生建立圆柱的正确表象,知道圆柱各部分的名称,在操作活动中探索圆柱的特征。

2、通过观察、想象、操作、讨论等活动,培养学生发现问题,分析问题和解决问题的能力,发展学生的空间观念。

3、引导学生学会从数学的角度去关注生活中的问题,感受数学学习的价值。

教学重点:建立圆柱的正确表象,认识圆柱各部分的名称及其特征。

教学难点:通过猜想验证的过程理解圆柱的侧面展开图的特征。

教学准备:课件、圆柱体、长方体、正方体、剪刀等。

教学过程:

一、温故对比引圆柱

1.出示圆。

还记得圆是什么图形吗?(平面图形)

2.出示柱。

老师只要在后面添上一个字,马上就变成立体图形了,同学们猜是什么?

(由圆到圆柱,推想发现圆柱是立体图形。)

3.想圆柱。

相信同学们都见过圆柱,想想印象中的圆柱是长什么样子的?

(唤起学生对圆柱的已有经验。)

4.摸圆柱。

老师为每组准备了一袋立体图形(袋子里有圆柱、长方体和正方体),里面就有圆柱,同学们尝试不用眼睛看,就凭双手摸出来。

5.谈圆柱。

在刚才摸的过程中,你是怎样区分圆柱体与长方体、正方体的?

6.引新课。

看来这圆柱还真是与众不同,今天我们就来好好地认识它。

?设计意图:通过回忆圆到出现圆柱,是从平面几何到立体几何的过程;从学生凭空思考圆柱的形状到亲身体验摸圆柱的形体,唤起了学生对圆柱的已有经验,更清晰地感知到圆柱体与长方体、正方体的异同,突出圆柱的表面特征。】

二、独立自主学圆柱

1.认识圆柱的几何图形。

(出示实物圆柱)这是一个圆柱形的物体,如果从一个角度看它,最多只能看到两个面,所以通常我们把圆柱体画成下面的形状课件演示从实物的圆柱到数学中的圆柱的抽象过程。

2.自学课本,认识圆柱各部分的名称。

同学们拿起圆柱自学课本第31页的内容,看看介绍了圆柱的什么知识。

3.分享自学成果。

4.加深理解,学生互相指一指圆柱的底面、侧面和高。

我们认识了圆柱的底面、侧面和高,请同学们拿起圆柱指给旁边的同学看看。

?设计意图:根据教学内容的特点,合理安排学习方式,让学生自学圆柱各部分的名称等最基本的概念,培养学生的自学能力,体验通过自身努力获取知识的成功感,同时也为后面自主探索圆柱侧面展开图的特征做好准备。】

三、猜想验证探圆柱

1、以制作一个圆柱的话题为主线,探索圆柱的侧面展开图的特征。

如果要做一个这样的圆柱,需要剪出哪些图形来制作呢?

除了需要两个完全相同的圆做圆柱的底面以外,那侧面应该用什么图形做呢?同学们猜一猜,如果把侧面剪开,展开后可能是什么图形?动手剪一剪看。

怎样剪才能得到长方形?

(通过猜想到动手操作,验证圆柱的侧面沿高剪开得到长方形。)

2.探索圆柱的侧面展开得到的长方形的长和宽与圆柱的底面和高的关系。

为什么剪出来的长方形有长有短、有宽有窄?长方形的长和宽究竟与圆柱的什么有关系呢?同学们讨论讨论。

3.汇报并总结圆柱的侧面展开图的特征。

小结:把圆柱的侧面沿着一条高剪开,展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。(配合课件演示)

4.借助练习巩固特征,并从中渗透圆柱的侧面展开图的其他情况。

⑴ 根据圆柱的侧面选择合适的底面。

⑵ 根据圆柱的底面选择合适的侧面。

?设计意图:以制作圆柱为主线,通过动手操作、猜想验证、合作交流等方式,探索圆柱的侧面展开图的特征,这是从认知几何到实证几何的过程。首先让学生掌握侧面展开的一般情况沿高剪开得到长方形;然后再通过练习题的方式将侧面展开的特殊情况(正方形)及其他情况(平行四边形和不规则图形)加以延伸,在保证学生掌握基础的前提下做到数学知识和数学思想的有益拓展。】

四、梳理新知用圆柱

1.梳理新知。

⑴ 师导。

同学们看,我们今天学到了关于圆柱的什么知识?

⑵ 生谈。

请同学们当推销员介绍一下你所认识的圆柱

2.运用新知。

⑴ 基本练习(以书面的形式出现)。

① 圆柱的上下两个面叫做( )面,它们是( )的两个圆。

② 圆柱有一个曲面叫做( )面。

③ 圆柱两个底面之间的距离叫做( )。圆柱有( )条高,它们的长度都( )。

④ 如果把圆柱的侧面沿着一条( )剪开,展开后得到一个( ),它的长等于圆柱底面的( ),宽等于圆柱的( )。

⑵ 判断说明。

判断下面的图形是不是圆柱,为什么?

3.回归生活,发现圆柱。

在生活中,你看见过哪些物体是圆柱形的?

?设计意图:梳理新知是一个非常重要的过程,先由老师引导总结的目的是为了照顾全体,再让学生互相介绍今天所学的知识,是为了每一个学生主动参与其中。而练习的设计则分为三个层面,先是通过书面练习及时检查全体学生对基本知识的掌握情况,然后在这基础上让学生尝试运用新知解决问题,接着让学生带着新知回归生活,发现早已存在于自己身边而未曾察觉的圆柱形物体,从而感受数学与生活的联系。】

五、欣赏了解悟圆柱

1.欣赏自然界以及人类生活、生产中有关圆柱的图片。(课件演示)

圆柱在咱们生活中随处可见,下面让我们一起走进圆柱的世界

2.介绍圆柱的高在生活中的其他叫法。

(高的别称是知识的拓展,也是为后续学习圆柱的表面积和体积做准备。)3.感悟圆柱,畅谈收获。

同学们,只要我们用发现的眼睛看生活,其实,生活中处处都充满着数学,看完刚才的图片,你有什么想说的吗?

4.放大圆柱的内涵介绍可乐罐的奥秘。

有没有发现可乐、百事、雪碧、健力宝等等的这类罐装饮料,它们的形状、大小都是一样的,这里面就隐藏着关于圆柱的商业秘密,想知道吗?

?设计意图:借助多媒体课件播放有关圆柱的图片,让学生知道原来自然界里到处都有圆柱,只是我们没有留意、没有发现而已。而聪明的前人早已意识到圆柱的独特之处,并懂得将其特征运用在生活和生产当中,从而使学生感悟到圆柱(数学)那无穷无尽的魅力和人类智慧的无限。最后介绍可乐罐的奥秘,是为了将学生对圆柱的认识面再往深层次扩大,惊叹数学的奇妙之余,达到课尽,而意未尽的效果,促使学生越来越喜欢数学】

六、学以致用做圆柱

课后作业:请同学们利用课本第147页的图样,自己动手做一个圆柱。

?设计意图:学是为了用。所谓数学来源于生活,最后还得学会用回生活,这是学习数学的最终目的,也是体现数学学习的价值所在。以做圆柱作为课后的作业,一是提供了巩固圆柱最基本的特征和学以致用的机会;二是让学生有一个亲身体验做一个圆柱的过程,为课外创造一个交流数学的话题。】

板书设计:

认识 圆柱

2个底面:是完全相同的两个圆

无数条高:两个底面之间的距离

?设计意图:简明扼要,突出教学重点,帮助学生整理新知;设计别出心裁,吸引学生的注意力,大大提高教学效益。】

人教五上数学教案篇3

一、学习目标

(一)学习内容

?义务教育教科书数学》(人教版)六年级下册第五单元第68~69页的例1、2。“抽屉原理”是一类较为抽象和艰涩的数学问题,对全体学生而言具有一定的挑战性。为此,教材选择了一些常见的、熟悉的事物作为学习内容,经历将具体问题“数学化”的过程。

(二)核心能力

经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(三)学习目标

1.理解“鸽巢原理”的基本形式,并能初步运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

2.通过操作、观察、比较、说理等数学活动,经历鸽巢原理的形成活动,初步形成模型思想,发展抽象能力、推理能力和应用能力。

(四)学习重点

了解简单的鸽巢问题,理解“总有”和“至少”的含义。

(五)学习难点

运用“鸽巢原理”解决相关的实际问题或解释相关的现象。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.谈话导入

师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请一位同学任意抽5张,不要让我看到你抽的是什么牌。但是老师却知道,其中至少有两张牌是同种花色的,再找一个学生再次证明。

师:看来我两次都猜对了。谢谢你们。老师为什么能料事如神呢?到底有什么秘诀呢?学习完这节课以后大家就知道了。

2.问题探究

(1)呈现问题,引出探究

出示例1:小明说“把4支铅笔放进3个笔筒里。不管怎么放,总有一个笔筒里至少放进2支铅笔”,他说得对吗?请说明理由。

师:“总有”是什么意思?“至少”有2支是什么意思?

学生自由发言。

预设:一定有

不少于两只,可能是2支,也可能是多于2支。

就是不能少于2支。

(2)体验探究,建立模型

师:好的,看来大家已经理解题目的意思了。那么把4支铅笔放进3个笔筒里,可以怎样放?有几种不同的摆法?(我们用小棒和纸杯分别表示铅笔和笔筒)请大家摆摆看,看有什么发现?

小组活动:学生思考,摆放。

①枚举法

师:大部分同学都摆完了,谁能说说你们是怎么摆的。能不能边摆边给大家说。

预设1:可以在第一个笔筒里放4支铅笔,其它两个空着。

师:这种放法可以记作:(4,0,0),这4支铅笔一定要放在第一个笔筒里吗?

(不一定,也可能放在其它笔筒里。)

师:对,也可以记作(0,4,0)或者(0,0,4),但是,不管放在哪个笔筒里,总有一个笔筒里放进4支铅笔。还可以怎么放?

预设2:第一个笔筒里放3支铅笔,第二个笔筒里放1支,第三个笔筒空着。

师:这种放法可以记作(3,1,0)

师:这3支铅笔一定要放在第一个笔筒里吗?

(不一定)

师:但是不管怎么放——总有一个笔筒里放进3支铅笔。

预设3:还可以在第一个笔筒里放2支,第二个笔筒里也放2支,第三个笔筒空着,记作(2,2,0)。

师:这2支铅笔一定要放在第一个和第二个笔筒里吗?还可以怎么记?

预设:也可能放在第三个笔筒里,可以记作(2,0,2)、(0,2,2)。

预设4:还可以(2,1,1)

或者(1,1,2)、(1,2,1)

师:还有其它的放法吗?

(没有了)

师:在这几种不同的放法中,装得最多的那个笔筒里要么装有4支铅笔,要么装有3支,要么装有2支,还有装得更少的情况吗?(没有)

师:这几种放法如果用一句话概括可以怎样说?

(装得最多的笔筒里至少装2支。)

师:装得最多的那个笔筒一定是第一个笔筒吗?

(不一定,哪个笔筒都有可能。)

?设计意图:在理解题目要求的基础上,通过操作活动,用画图和数的分解来表示上述问题的结果,更直观。再通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。】

②假设法

师:刚才我们研究了在所有放法中放得最多的笔筒里至少放进了几支铅笔。怎样能使这个放得最多的笔筒里尽可能的少放?

预设:先把铅笔平均放,然后剩下的再放进其中一个笔筒里。

师:“平均放”是什么意思?

预设:先在每个笔筒里放一支铅笔,还剩一支铅笔,再随便放进一个笔筒里。

师:为什么要先平均分?

学生自由发言。

引导小结:因为这样分,只分一次就能确定总有一个笔筒至少有几支笔了。

师:好!先平均分,每个笔筒中放1支,余下1支,不管放在哪个笔筒里,一定会出现总有一个笔筒里至少有2支铅笔。

师:这种思考方法其实是从最不利的情况来考虑,先平均分,每个笔筒里都放一支,就可以使放得较多的这个笔筒里的铅笔尽可能的少。这样,就能很快得出不管怎么放,总有一个笔筒里至少放进2支铅笔。我们可以用算式把这种想法表示出来。

?设计意图:让学生自己通过观察比较得出“平均分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。】

(3)提升思维,建立模型

①加深感悟

师:如果把5支笔放进4个笔筒里呢?大家讨论讨论。

预设:5支铅笔放在4个笔筒里,先平均分,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:把7支笔放进6个笔筒里呢?还用摆吗?

学生自由发言。

师:把10支笔放进9个笔筒里呢?把100支笔放进99个笔筒里呢?

师:你发现了什么?

预设:我发现铅笔的支数比笔筒数多1,不管怎么放,总有一个笔筒里至少有2支铅笔。

师:你的发现和他一样吗?

学生自由发言。

师:你们太了不起了!

师:难道这个规律只有在铅笔的支数比笔筒数多1的情况下才成立吗?你认为还有什么情况?

练一练:

师:我们来看这道题“5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子,为什么?”

师:说说你的想法。

师:由此看来,只要分的物体比抽屉的数量多,就总有一个抽屉里至少放进2个物体。这就是最简单的鸽巢原理。【板书课题】

介绍狄利克雷:

师:鸽巢原理最先是由19世纪的德国数学家狄利克雷提出来应用于解决问题的,后来人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律用他的名字命名,叫狄利克雷原理,也叫抽屉原理。

②建立模型

出示例2:一位同学学完了“鸽巢原理”后说:把7本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有3本书。他说得对吗?

学生独立思考、讨论后汇报:

师:怎样用算式表示我们的想法呢?生答,板书如下。

7÷3=2本……1本(2+1=3)

师:如果有10本书会怎么样能?会用算式表示吗?写下来。

出示:

把10本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

10÷3=3本……1本(3+1=4)

师:观察板书你有什么发现?

预设:我发现“总有一个抽屉里至少有2本”,只要用“商+1”就可以得到。

师:那如果把8本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?请大家算一算。

学生讨论,汇报:

8÷3=2……22+1=3

8÷3=2……22+2=4

师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。

师:认真观察,你认为“抽屉里至少有几本书”或“鸽笼里至少有几只鸽子”可能与什么有关?

预设:我认为根“商”有关,只要用“商+1”就可以得到。

师:我们一起来看看是不是这样(引导学生再观察几个算式)啊!果然是只要用“商+1”就可以了。

引导总结:我们把要分的物体数量看做a,抽屉的个数看做n,如果满足【a÷n=b……c(c≠0)】,那么不管怎样放,总有一个抽屉里至少放(b+1)本书。这就是抽屉原理的一般形式。

鸽巢原理可以广泛地运用于生活中,来解决一些简单的实际问题。解决这类问题时要注意把谁看做“抽屉”。

?设计意图:借助直观操作和假设法,将问题转化为“有余数的除法”的形式。可以使学生更好地理解“抽屉原理”的一般思路,经历将具体问题“数学化”的过程,初步形成模型思想,发展抽象能力、推理能力和应用能力。考查目标1、2】

3.巩固练习

(1)学习了“鸽巢原理”,我们再回到课前的“扑克牌”游戏,你现在能解释一下吗?(出示课件)学生思考,讨论。

(2)第69页的做一做第1、2题。

4.全课总结

师:通过这节的学习,你有什么收获?

小结:今天这节课我们一起研究了鸽巢原理,也叫抽屉原理,解决抽屉原理问题关键就是找准物体和抽屉,在一些复杂的题中,还需要我们去制造抽屉。

(三)课时作业

1.一个小组共有13名同学,其中至少有几名同学同一个月出生?

答案:2名。

解析:把1—12月看作是12个抽屉,13÷12=1…11+1=2【考查目标1、2】

2.希望小学篮球兴趣小组的同学中,最大的12岁,最小的6岁,最少从中挑选几名学生,就一定能找到两个学生年龄相同。

答案:8名。

解析:从6岁到12岁一共有7个年龄段,即6岁、7岁、8岁、9岁、10岁、11岁、12岁。用7+1=8(名)【考查目标1、2】

第二课时鸽巢原理

中原区汝河新区小学师芳

一、学习目标

(一)学习内容

?义务教育教科书数学》(人教版)六年级下册教材第70页例3。本例是“鸽巢原理”的具体应用,也是运用“鸽巢原理”进行逆向思维的一个典型例子。要解决这个问题,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”,这样就把“摸球问题”转化为“抽屉问题”。

(二)核心能力

在理解鸽巢原理的基础上,利用转化的思想,把新知转化为鸽巢问题,提高分析和推理的能力。

(三)学习目标

1.进一步理解“抽屉原理”,运用“抽屉原理”进行逆向思维,解决实际问题,体会转化思想。

2.经历运用“抽屉原理”解决问题的过程,体验观察猜想,实践操作的学习方法,提高分析和推理的能力。

(四)学习重点

引导学生把具体问题转化为“抽屉原理”。

(五)学习难点

找出“抽屉”有几个,再应用“抽屉原理”进行反向推理。

(六)配套资源

实施资源:《鸽巢原理》名师教学课件

二、学习设计

(一)课堂设计

1.情境导入

师:同学们,你们喜欢魔术吗?今天老师给你们表演一个怎么样?看,这是一副扑克牌,去掉两张王牌,还剩下52张,请同学们任意挑出5张。(让5名学生抽牌)好,见证奇迹的时刻到了!你们手里的牌至少有2张是同花色的。

师:神奇吧!你们想不想表演一个呢?

师:现在老师这里还是刚才这副牌,请你抽牌,至少抽多少张牌才能保证至少有2张牌的点数相同呢?

在学生抽的基础上揭示课题。教师:这节课我们学习利用“鸽巢原理”解决生活中的实际问题。(板书课题:鸽巢原理)

2.探究新知

(1)学习例3

①猜想

出示例3:盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,至少要摸出几个球?

预设:2个、3个、5个…

②验证

师:我们的猜想是不是正确呢?我们可以用画一画、写一写的方法来说明理由,并把验证的过程进行整理。

可以用表格进行整理,课件出示空白表格:

学生独立思考填表,小组交流。

全班汇报。

汇报时,指名按猜测的不同情况逐一验证,说明理由,看看解决这个问题是否有规律可循。

课件汇总,思考:从这里你能发现什么?

教师:通过验证,说说你们得出什么结论。

小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。

③小结

师:为什么球的个数一定要比抽屉数多?而且是多1呢?

预设:球有两种颜色,就是两个抽屉,从最不利的情况考虑摸2个球都不同色,就必须多摸一个,所以球一定要比抽屉数多1。其实摸4个球、5个球或者更多球,都能保证一定有2个球同色,但问题中要求摸的球数必须“至少”,所以摸3个球就够了。

师:说得好!运用学过的知识、逆推的方法说明了“只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色”。这一结论是正确的。

板书:只要摸出的球比球的颜色种数至少多1,就能保证有2个球同色。或者说只要物体数比抽屉数至少多1,就能保证有一个抽屉至少放2个物体。

(2)引导学生把具体问题转化成“抽屉原理”。

师:生活中像这样的例子很多,我们不能总是猜测或动手试验,能不能把这道题与前面讲的“抽屉原理”联系起来思考呢?

思考:①摸球问题与“抽屉原理”有怎样的联系?

②应该把什么看成“抽屉”?有几个“抽屉”?要分别放的东西是什么?

学生讨论,汇报结果,教师讲评:因为有红、蓝两种颜色的球,可以把两种“颜色”看成两个“抽屉”,“同色”就意味着“同一个抽屉”。这样把“摸球问题”转化成“抽屉问题”,即“只要分的物体比抽屉多1,就能保证有一个抽屉至少有2个同色球”。

从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个抽屉里各拿了1个球,不管从哪个抽屉里再拿1个球,都有2个球是同色的。假设至少摸a个球,即a÷2=1……b,当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有2个球同色。

结论:要保证摸出的球有两个同色,摸出的球数至少要比抽屉数多1。

3.巩固练习

(1)完成教材第70页“做一做”第1题。

(2)完成教材第70页“做一做”第2题。

4.课堂总结

师:这节课你学到了什么知识?谈谈你的收获和体验。

(三)课时作业

1.有黑色、白色、蓝色、红色手套各10只(不分左、右手),至少要拿出多少只(拿的时候不看颜色),才能在拿出的手套中,一定有两只不同颜色的手套?

答案:5只。

解析:4个颜色相当于4个抽屉,保证一定有两只不同的颜色,相当于分的物体个数比抽屉多1。【考查目标1、2】

2.一个鱼缸里有很多条鱼,共有5个品种。至少捞出多少条鱼,才能保证有4条鱼的品种相同?

答案:16条。

解析:5个品种相当于5个抽屉,保证有4条鱼品种相同,所放物品的个数是:5×3+1=16。【考查目标1、2】

人教五上数学教案篇4

这和整数相邻两个计数单位间的进率是一样的,因此,一个小数的小数部分可以用小数点与整数部分隔开,排在整数部分的右边,向整数一样计数。

10个十分之一是整数1,整数个位的右边应该是什么位?

多少个百分之一是十分之一?十分位右边应该是哪一位?百分位右边应该是哪一位呢?再往下还有万份位、十万份位等,所以我们在数位表上用……

十分位的计数单位是多少?百分位、千分位、万分位的计数单位分别是多少?

指出345.679整数部分中的每一位分别是什么位?

再指出小数部分的十分位、百分位、千分位上分别是多少?

2、教学小数的读法

出示古钱币的相关数据:高:0.58米、厚:3.5厘米、重:41.47千克

问:你会读出古钱币的有关数据吗?

谁能总结一下小数的读法?

强调:读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。

完成做一做:读出下面小数

3、教学小数的写法

(1)例3:据国内外专家实验研究预测:到2100年,与1900年相比,全球平均气温将上升一点四至五点八摄氏度,平均海平面将上升零点零九至零点八八米。

你会写出上面这段话中的小数吗?

(2)做一做:写出下面的小数。

零点零七五点零六十点零零二

三百点七一零点零一四十五点五零三

三、巩固练习

1、填空

0.9里面有()个0.1

0.07里面有()个0.01

4个()是0.04

2、小数点右边第二位是()位,第四位是()位,第一位是(),第三位是()。

3、说出24.375每个小数位上的数各是几个几分之一?

4、读出下面各数

(1)南江长江大桥全长6.772千米。

(2)土星绕太阳转一周需要29.46年。

(3)1千瓦时的电量可以使电车行驶0.84千米。

人教五上数学教案篇5

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教五上数学教案篇6

教学内容

人教二年级下册教材第100~102页的例1、例2及第103页“做一做”、第105页练习二十的第2、6题。

内容简析

例1 认识质量单位“克”。教材借助一包口香糖、一包菊花茶和一袋瓜子这些常见、带有质量标示的物品,使学生直观认识克的作用——用来计量比较轻的物品的质量。

例2 认识质量单位“千克”。与例1编排思路相同,同样借助生活中常见的物品,使学生直观地看到质量单位千克的作用——计量比较重的物品的质量。

教学目标

1.通过调查和交流,使学生了解常用的质量单位克和千克及计量工具,知道1千克=1000克。

2.在掂一掂、估一估、称一称的实践活动中,初步建立1克和1千克的质量观念,并学会以此为标准去估量物体的质量,培养学生的动手能力和合作意识。

3.了解克和千克在生活中的作用,体会质量单位与生活的密切联系,让学生感受到学习数学的价值。

教学重难点

在实践活动中感知1克、1千克的物体有多重,初步建立克、千克的概念,渗透数学模型思想。

教法与学法

1.本课时是基于学生已有的生活经验,帮助学生通过数学的加工整理,把感性认识上升为理性认识,达到懂得使用数学的语言描述身边物体质量的状态,并能根据实际情况估计出物体的质量,发展学生的数学思维,体验学习质量单位的实际意义。

2.本课时学生的学习主要是通过亲自掂一掂、说一说、估一估等一系列实践操作方法来学习克和千克,建立数学模型思想。

承前启后链

教学过程

一、情景创设,导入课题

课件展示法:课件出示主题图中超市水果区域的情境,特别要突出标签上的钱数和500克、1千克等。请学生结合自己买东西的经验,说一说在图中发现的数学信息。

师生交流:我们在买东西时,经常要称一称物品的质量,在数学上我们称为物品的质量。像图中的水

果,都是按500克或1千克多少钱来标价的。要表示物品有多重,就需要用到质量单位克和千克。(教师板书课题:克和千克。)

?品析:结合学生的生活实际,让学生在熟悉的情境中,了解常见的计量单位,激活学生的生活经验和数学思维。】

实践操作法:同学们,你们都喜欢去商店买东西吧!你买过什么?这是老师昨天在超市买的两袋东西。(出示:一袋盐和一袋洗衣粉)

1.猜一猜:哪一袋重一些?

2.掂一掂:哪一袋重一些?

要知道食品准确的质量该怎么办呢?(用秤称一称)这节课我们就来学习用秤称物品及质量单位克和千克。

?品析:直接用实践操作,掂一掂,感受质量,引出质量单位克和千克,为后面开启生动活跃的课堂氛围作了铺垫。】 游戏体验法:请三位学生到台前做“背一背”的游戏:请一位同学背另外两位同学(一胖一瘦,轻重对比明显)。背的同学把感受讲给同学们听,让学生感受到人是有轻重的。再请学生掂一掂桌上或带来的物体,感受物体的轻重并互相说一说。

?品析:在游戏中感悟物品的质量,体验轻重,在欢快的游戏中开始了对物品质量问题的思考。】

二、师生合作,探究新知

1.认识“克”。

(1)借助实物感知克。

①课件出示超市里常见的用“克”作单位的食品包装袋,让学生初步感知“克”与生活的紧密联系,积累生活经验。

②观察交流:引导学生认真观察,了解关于它们轻重的信息。

③小组活动:每一位同学用手掂一掂老师准备好的口香糖、菊花茶、袋装瓜子,体验3克、12克、100克分别是多重。

④全班汇报:说一说掂量后的感受,轻还是重。

⑤师生小结:计量比较轻的物品,常用克作单位,克也可以用符号“g”表示。教师板书:克(g)。

⑥你们知道在生活中还有哪些以克作单位的物品吗?

(2)掂一掂,体验1克有多重。

让学生取出自己准备的2分硬币,先放在手中掂一掂,再闭上眼睛感受它的轻重,并把这种感觉记在心里。

(3)找一找,巩固1克的质量观念。

①小组活动:在老师准备的物品中找一找、掂一掂,看看还有哪些物品大约重1克。

②对比试验:让学生试着从装黄豆的袋子里取出一些黄豆,使这些黄豆共重1克。

③提练方法:操作后交流汇报,你用什么方法取出1克黄豆?

④质疑交流:怎样验证多少粒黄豆重1克?(用称一称的方法来验证)教师指出称比较轻的物品我们常用天平。

2.认识天平。

(1)看一看:①出示天平。通常我们把要称的物品放在左盘,右盘放砝码。②介绍砝码。砝码中最轻的只有1克,这盒砝码中最重的是100克,你们知道砝码是用什么作单位的吗?

(2)称一称:演示利用天平称1克黄豆的过程。

(3)掂一掂:请每个小组都取出约1克重的黄豆,感受1克有多重。

(4)估一估:呈现教材第101页的“做一做”,让学生进行判断,并说明判断的方法。该题以1克为标准,估量物品的轻重。以此使学生初步掌握估量的方法,以选定的标准去比较。最后通过说出生活中比1克轻的物品,进一步巩固对1克的认识。【品析:通过掂一掂、估一估、称一称、找一找等实际操作活动,让学生充分感知质量的轻重,明确“克”用于计量比较轻的物品,同时培养和提高学生的动手能力和合作学习的意识。】

3.认识“千克”。

(1)做一做,初步感知千克。

①出示例2大桶洗衣液和一箱苹果的实物图。

②引导学生认真观察,了解关于它们轻重的信息。

③多请一些学生来提一提这两样物品,谈谈自己的感受。

④师生小结:计量比较重的物品,常用千克作单位,千克也可以用符号“kg”来表示。教师板书:千克(kg)。

(2)算一算,克与千克之间的关系。

①教师出示2袋盐,每袋500克,学生算出一共有多重。预设1:1000克 ;预设2:1千克。

②教师小结:对,1千克等于1000克。板书:1千克=1000克。

(3)掂一掂,体验1千克有多重。

①小组活动:每一位同学用手掂一掂老师准备好的2袋盐,在心里记住它的质量。在老师准备的其他物品中找出重1千克的物品,看谁找得准。

②交流找法:说一说自己是怎样找的。

③操作比较:小组内每个同学轮流一手拿着1克的物品,一手拿着1千克的物品,掂一掂、比一比,说说自己的感受。

(4)游戏:猜一猜。

出示一物体,教师知道它的准确质量,让学生猜一猜。在猜的过程中,教师根据学生猜的数据运用“重一些”“重得多”“轻一些”“轻得多”来进行提示。并适当请学生说一说你是怎么猜的,引导学生运用参照物对比着来猜物体的质量,提高估量的准确性。谁猜中了,就将物品奖给谁。

?品析:在学生认识克的基础上,通过做一做、算一算、掂一掂等操作活动,让学生自主发现克与千克之间的关系,具体感知1千克的实际质量,并将它与熟悉的物品质量联系起来,有利于学生更好地建立1千克的质量观念。】

4.认识用千克作单位的几种秤。

(1)认识盘秤。

①课件出示盘秤,教师介绍盘秤的名称。让学生观察,并找找盘秤的单位。

②课件演示盘秤上放入1千克洗衣粉,指针指向1,让学生认一认有多重。还可以变换几种质量让学生加以辨认。

(2)认识弹簧秤。

①课件出示弹簧秤,教师介绍弹簧秤的名称。让学生观察,并找找弹簧秤的单位。

②课件出示弹簧秤挂上5个一袋的西红柿,指针指向1,让学生认一认是多重,有几个。

③这个弹簧秤最多可以称几千克的物品?你是怎样想的?

(3)认识体重秤。

①课件出示体重秤,教师介绍体重秤的名称。让学生观察,并找找体重秤的单位。

②课件演示一个学生称体重时,指针指向20和25之间的23处,教师引导学生正确读出该生的体重。

③通过对三种秤的观察,你发现在测量时有什么共同的地方吗?

?品析:让学生认识用千克作单位的几种秤,了解不同的秤称物体的'方法,逐渐丰富对1千克的感知,使他们真正感受到1千克有多重,进一步加强直观感受,深化对千克的认识。】

三、反馈质疑,学有所得

质疑:生活中哪些物品大约有1克重,哪些物品有1千克重?

学生列举交流,比如1个2分硬币、1粒花生米、2粒黄豆等大约有1克重;2瓶500毫升的矿泉水、1升大瓶可乐、16个鸡蛋、4袋牛奶等大约有1千克重。

四、课末小结,融会贯通

这节课我们不但认识了质量单位克与千克,还知道了这两个质量单位之间的关系。

五、教海拾遗,反思提升

教材要求学生初步认识质量单位克与千克,初步建立1克、1千克的质量观念,教材的安排是分两个课时认识克和千克的。由于这一节是学习质量单位的开始,学生虽然在生活中都接触过质量问题,但对质量单位还缺乏认识。而质量单位又不像长度单位那样直观、具体,不能靠眼睛观察得到,只能靠肌肉感觉来感知。为了使学生建立正确的质量观念,在教学这部分内容时,我着力加强学生的动手操作实践活动,由易到难,由少到多,由感性到理性,关注学生在学习活动中的感知体验,切实让学生建立质量观念。

我的反思:

板书设计

克和千克的认识

计量比较轻的物品,常用克(g)作单位;计量比较重的物品,常用千克(kg)作单位。

↓ ↓

1个2分硬币约重1克 2袋盐约重1千克

↓ ↓

比较轻的物品常用天平来称 比较重的物品常用秤来称

第2课时 解 决 问 题

教学内容

人教二年级下册教材第104页例3、“做一做”及第106页练习二十的第9题。

内容简析

例3 安排了解决问题的内容,意在巩固学生已经建立的1千克的质量观念,进一步培养学生的估量能力。题目要求比较简单,但越简单可能越觉得无从下手,要引导学生转到对苹果个数的关注上,由此唤起学生已有的称量的经验。

教学目标

1.进一步感受质量单位,建立千克与克的质量观念,牢固掌握克与千克之间的关系。

2.学生在实践、观察和推算的活动中,能够根据物体的实际情况选择合适的质量单位进行表达和交流,进一步培养学生的估量能力。

3.让学生在实践活动中,体会数学与生活的密切联系,增强学习数学的兴趣;学会与他人合作交流,建立积极的数学学习情感。

教学重难点

进一步建立克和千克的质量观念,通过估量解决问题。灵活运用估量的方法解决问题,形成估量策略。

教法与学法

1.本课时学生应用已学的质量单位的知识,通过估量解决实际问题。在解决问题的过程中,不仅巩固建立1千克的质量观念,而且培养学生的估量意识,帮助学生积累估量的经验,形成估量策略。

2.本课时学生在实践活动中,运用与他人合作的方法,解决问题,体会数学与生活的密切联系。

承前启后链

教学过程

一、情景创设,导入课题

猜谜语法:衣服有绿又有红,味道酸酸又甜甜,多多和它做朋友,小脸红红人人爱。猜一猜这是什么水果?(苹果)大家经常吃苹果,苹果有大有小,谁能估计一下几个苹果大约重1千克。老师这里有20个苹果,大家估计一下大约重多少千克。

?品析:猜谜语调动了学生的学习兴趣,然后老师借着学生的兴奋情绪,提出估计几个苹果大约重1千克的问题,为新授做好了引导。】

实践体验法:老师带来几个苹果,它们有大有小,请每个小组派一名代表上台掂一掂,估计几个苹果大约有1千克。学生用手掂一掂苹果,交流苹果的轻重大小,估计几个苹果大约重1千克。然后教师出示例题3:王奶奶摘了20个苹果,估计一下大约重多少千克。进入新课教学之中。

?品析:学生积极参与实践体验法,通过讨论交流,确认几个苹果大约重1千克,为解决问题奠定了基础。】

二、师生合作,探究新知

1.估一估。

(1)对比自己熟悉的物品质量,估一估1千克苹果的个数。

(2)学生汇报。

2.称一称。

(1)小组活动:称1千克苹果并数一数个数。

(2)汇报各小组称重的结果,教师记录。

(3)观察记录的数据,从数量上发现规律。

(4)讨论:同样都是1千克苹果,为什么称出的个数会不一样呢?

?品析:在本环节中,设计了“先估再称”这个有效的学习活动,充分调动学生的积极性和主动性,以活动代替老师的讲解,全班学生都积极参与到活动中来,大大提高了课堂效率。通过估计1千克苹果大约有多少个,既培养了学生的估量意识,又渗透了辨证思想的启蒙教育。】

3.提出问题。

(1)出示例3:王奶奶摘了20个苹果,估计一下大约重多少千克。

(2)学生读题后汇报发现的信息。

(3)鼓励学生用自己的方法进行估量。通过“知道了什么?”环节理解教学,注意突出解决问题的策略——估计。

师:要想知道20个苹果大约有多重,你可以用什么方法去估量?

预设一:

生:估一估每个苹果有多重,再算出20个苹果的质量。

师:这是一种办法。你估计一下一个苹果有多重?

生:200克。

师:那20个苹果就有20个200克。你认为计算起来怎么样?

生:用加法算比较麻烦。

师:那你还有更好的办法吗?

预设二:

生:先估一估1千克有几个苹果。

师: 以你的生活经验,1千克一般有几个苹果?

生:5个。

师:那就可以每5个苹果放一堆。(用电子笔将5个苹果圈一圈。)这样的话,就是求什么?

生:20里面有几个5?

4.解决问题。

(1)通过阅读“怎样解答?”两个学生的对话,突出了估计的方法,即运用前面建立的1千克的质量观念作标准估出结果。同时,通过答案的文字呈现突出了估计的标准。

(2)引导学生按苹果大小的不同列式推理出20个苹果大约重多少千克。

(3)分组解决问题。

第一、二两组解决如果苹果1千克4个,20个大约重多少千克;第三、四两组解决如果苹果1千克5个,20个大约重多少千克。

(4)汇报交流。

人教五上数学教案篇7

教学内容:

九年义务教育六年制第十二册第36~37页例4、例5及做一做,练习八的第1、2题。

教学目标:

1、理解圆柱体体积公式的推导过程,并会正确地计算出圆柱的体积。

2、培养学生的迁移能力、逻辑思维能力,并进一步发展空间观念。

3、引导学生探索和解决问题,体验转化及极限的思想方法。

教学重点:圆柱体体积的计算.

教学难点:理解圆柱体体积公式的推导过程.

教具:多媒体课件、圆柱形容器、水、橡皮泥。

教学过程:

一、激凝导入

师: 大家都知道,水是生命之源!我们要养成节约用水的好习惯。可前两天,老师家的水龙头出了问题,你们看,一刻钟就滴了这么多水。(出示装有水的圆柱容器。)

(1)启发思考:容器里面的水形成了什么形状?(圆柱)你能知道这些水的体积吗?你能想什么办法知道它的体积?

(2)生回答。

2、出示橡皮泥捏成的圆柱体。

那你有办法求出这个圆柱体橡皮泥的体积吗?

生(热情的):老师将它捏成长方体或正方体就可以了!

3、创设问题情境。

师小结:这么说同学们都有办法将一些圆柱形的物体转化为长方形或正方体来求它们的体积,大家真了不起!那如果我们要求某些建筑如(出示课件:人民大会堂东门前的门柱和压路机大前轮)雄伟的人民大会堂东门前的一个圆柱形门柱的体积,或者求压路机圆柱形大前轮的体积,还能用刚才同学们想出来的办法吗?(不能)

那怎么办?

学生试说出自己的办法。

师:看起来前面这些方法虽然可行,但有一定的局限性,我们必须找到一个解决任意圆柱体积的方法才行,是不是?今天,就让我们来共同研究解决任意圆柱体积的方法。(板书课题:圆柱的体积)

二、经历体验、探究新知

1、推导圆柱的体积公式。

师:你们打算怎么去研究圆柱的体积?

小组同学讨论研究的方法。

2、学生动手操作感知

(1)学生以小组为单位操作体验。(操作学具,进行拼组)。

(2)学生小组汇报交流:

近似长方体的体积等于圆柱的体积;近似长方体的底面积等于圆柱的底面积;近似长方体的高就是圆柱的高。根据长方体的体积等于底面积乘高,得出圆柱体的体积也等于底面积乘高。。。。。。

(3)想像:如果把圆柱像这样等分成32份、64、128份后再拼起来,会怎么样?有怎样的变化趋势?分成无数份呢?(平均分的份数越多,拼起来的近似长方体的长越近似于直线,这样整个图形越近似于长方体。如果照这样分成无限多份,拼出的图形就是长方体)

3、教师课件演示圆柱转化成长方体的过程。

4、师生共同推导出圆柱的体积公式:

长方体的体积=底面积高

圆柱的体积=底圆柱面积高

v = sh

5、巩固公式

①v、s、h各表示什么?

②知道哪些条件就可以求圆柱的体积?

а、知道底面积和高可以直接用公式计算圆柱的体积;

b、知道底面半径和高,可以先计算出底面积,再计算体积;

c、知道底面直径和高,要先算出半径,再算出底面积,最后才能计算出圆柱的体积。

学生回答后师板书。

6、教学例4、例5。

课件分别出示例4、例5,让学生找出题中的条件和问题,然后独立完成,集体订正。

三、实践练习

1、出示课件:人民大会堂东门前的门柱和压路机大前轮的有关数据求出它的体积。

2、拓展延伸:同学们到工厂参加社会实践。工人师傅拿出一块长、宽、高分别是6厘米、5厘米、4厘米的长方体,问:同学们,现在我们要把这块木料加工成一个体积最大的圆柱体,你们想一想,圆柱的底面直径和高应是多少?小林想了想说:我知道了。

同学们,你们知道小林是怎样想的吗?

四、课堂总结;

通过本节课的学习,你有什么收获?

会计实习心得体会最新模板相关文章:

人教版数学加与减教案模板6篇

人教版数学加与减教案优秀8篇

一年级语文教案上册人教版教案6篇

人教版三年级上册数学教案8篇

人教版语文六年级下册语文教案5篇

人教版六年级上册数学教学计划6篇

人教版小学语文教案精选5篇

人教版四年级数学工作总结8篇

部编人教版八年级语文上册教案5篇

人教版三年级上册数学教案优质8篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    40736

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。