笔笔范文网 >培训计划

青岛版数学教案5篇

撰写教案使教师在教学前做好充分准备,降低课堂中的盲目性,很多人在撰写教案的过程中,发现了自己教学理念的变化与发展,以下是笔笔范文网小编精心为您推荐的青岛版数学教案5篇,供大家参考。

青岛版数学教案5篇

青岛版数学教案篇1

第一课时

教学与实践活动内容:青岛版的三年级数学上册第72——73页

教学与实践活动过程:

一、导入新课:

(出示挂图)在这些变化中还存在许多数学问题。

你对哪个时期印象最深?了解到什么?

二、讲授新课

他们从图中了解到什么?

多少是一半?一半怎样表示?(小组交流)

说说你是怎么表示的?

3、有没有什么符号可以表示一半?

出示:1/2 读作二分之一 这样的数,我们叫它分数。

4、教学书写:

先写“—”,再写“2”,最后写“1”

5、胎儿头长占身长的一半,也就是多少?

用纸条表示胎儿的身长,怎么表示一半?

6、婴儿、成人的头长也能用1/2表示吗?用纸条折一折,涂一涂,表示一下。

指出头长在哪儿?可以用哪个分数表示?

成人呢?

7、今天,我们认识了3个分数:1/2 1/4 1/8

8、学习书写:

1/2:先写“—”,再写“2”,最后写“1”

分数就这三个吗?你还知道哪些分数?

三、小结

板书设计:

分数的初步认识

读作二分之??

读作四分之??

1/8 读作八分之??

教学反思:

通过看图和实际的操作,学生对分数的含义认识比较好,知道分母、分子的意思。分数的认读需要加强练习,一部分学生习惯从分子开始读,导致错误。

第二课时

教学与实践活动内容:

认识几分之几,分数各部分的名称、比较同分母分数的大小

教学与实践活动过程:

一、复习导入:

(出示图片)涂色部分是多少?

出示分数,学生涂色

二、讲授新课

1、成年人的头长占整个身长的多少?

2、成年人上身的长约占整个身长的多少?

3、八分之三是什么意思?(小组交流)

你能在这条线段上表示一下吗?

4、 教学分数各部分的名称

3 分子

—— 分数线

8 分母

5、成年人下身的长约占整个身长的多少?你能说一说,写一写吗?

6、成年人的上身长还是下身长?(小组讨论解决问题)

(引导学生学会比较同分母分数的大小)

三、练习

1、 自主练习2:看分数,涂颜色

2、 自主练习3:火眼金睛辨对错

说一说对不对,为什么?

3、 自主练习4:先写出涂色部分所表示的分数,再比较大小。

(先自己写一写,再在小组中交流。)

4、 自主练习5:写出下面的分数

5、 自主练习6:先说说题目的意思,再填空。

板书设计:

分数的初步认识

3 分子

—— 分数线

8 分母

教学反思:

分数的比较是学习的重点,也是难点,需要通过大量的练习来加强巩固与理解。

第三课时

教学与实践活动内容:比较异分母分数的大小,巩固练习

教学与实践活动过程:

一、复习导入:

出示分数,学生认读

出示分数,学生比较大小

二、讲授新课

1、你会比较下面每组分数的大小吗?

1/4 1/9

2、小组讨论有什么方法?(小组交流)

3、全班交流:

4、总结方法:

当分子相同,分母不同时,哪个分数大

5、你会比较下面的分数吗?

1/2 和1/4 1/5和 1/4

三、练习

1、自主练习7:同位互相合作,完成练习

2、自主练习9:填空

进行小竞赛,看谁填的又对又快

3、自主练习10:你能照这样摆下去吗?

(先自己摆一摆,再填空,在小组中交流。)

说说,你发现了火柴棒的根数有什么变化规律?

4、自主练习11:小小设计师

花坛面积占整块地面积的几分之几?

自己设计一个花坛,说说你设计的花坛占整块地面积的几分之几?

5、自主练习12:数学手抄报

估一估,“小小发明家”栏目大约占手抄报的几分之几?

“名人名言”栏目大约占手抄报的几分之几?

你还能提出什么问题?

6、知识长廊:读一读,了解分数的由来与发展。

教学反思:

异分母分数的比较对学生来说比较难理解,开始时可以借助图画来观察、理解。慢慢地过度到抽象的分数比较大小。

第四课时

教学与实践活动内容:简单分数的加减法

教学目标:

1、学会通过信息窗提供的信息提出问题,,并运用简单的的分数加、减法解决问题。

2、通过小组交流,合作探索,体验算法的多样化,培养初步的合作意识和创新能力。

3、经历提出问题、解决问题的过程,充分体验解决数学问题的成功感,增强学习数学的信心。

教具、学具准备:

教学挂图

教学与实践活动的过程:

一、复习导入:

1、出示分数,认读

2、2/7是什么意思?

3、举例说一个分数。

二、新授:

1、同学们,我们已经知道,我们每一个人在成长过程中都会发生奇妙的变化。当你长大成人的时候,身体各部分的比例会发生什么样的变化吗? 出示挂图

(引导学生观察画面。)

2、你能提出什么数学问题?

(鼓励学生提出问题。)

3、出示问题1:成年人的躯干和下肢共占身长的几分之几?

你能解决刚才提出的问题吗?(小组内交流)

汇报:

3/8+4/8=7/8

全班交流算法:

(1)3/8表示8份中的3份,4/8表示8份中的4份,3加4是7份,8份中的`7份就是7/8。

(2)3/8是3个1/8,4/8是4个1/8,3个1/8加4个1/8就是7个1/8,即7/8。

说说你喜欢哪种算法。

4、出示问题2:成年人下身比上身长几分之几?

这个问题你能自己解决吗?(自己完成)

汇报自己的算法

三、巩固练习

1、自主练习1:算一算

先看图,弄清图意再解答。

2、自主练习2

学生自己完成练习

同位互相检查。

补充类似练习,适当扩展延伸。

3、自主练习3

指名说说图意

同位互相涂一涂,完成练习

问题:一共涂了几分之几?

谁涂的多?多了几分之几?

四、小结

板书设计:

简单分数的加、减法

3 / 8 + 4 / 8 = 7 / 8

5 / 8 – 3 / 8 = 2 / 8

教学反思:

同分母分数的加减法比较简单,学生掌握较好,但是个别学生还需要加强练习。有时候,在练习中,就可以自然而然地掌握知识。因此必要的练习必须加强。

第五课时

教学与实践活动的内容:完成练习

教学与实践活动过程:

一、谈话导入:

同学们,今天让我们一起来复习一下我们学过的简单分数的加、减法。

二、巩固练习

1、自主练习4

出示挂图:小组开火车竞赛

2、自主练习5

指名读题,了解题意

独立完成,指名上黑板,全班订正

3、自主练习6

出示课件,帮助学生理解题意。

小组交流,完成填空

4、自主练习7

出示挂图,指名读题

做一朵花用了这张纸的几分之几?

做一颗五星比做一面红旗多用了几分之几?

这张纸用完了吗?

5、自主练习8

独立完成,要求正确、迅速,书写工整

6、聪明小屋:

教师出示四个学生名字的卡片,小组合作,按照身高关系排排队。

说说你的推理过程。

7、你知道吗?

出示小知识,自己读一读。

说说你了解到了什么?

三、小结

教学反思:

通过一些各种各样的练习,学生对分数部分知识的学习得到了进一步的巩固与提高。

第六课时

教学与实践活动内容:我学会了吗?

教学目标:

1、运用本单元学到的知识解决问题。

2、指导学生进行自我评价。

教具、学具准备:

准备一些拼图

教学与实践活动的过程:

一、导入:

看,小奇和小玲在玩拼图游戏。我们来看看他们拼的怎么样?

出示图画

二、我学会了吗?

1、小奇和小玲各摆了这个拼图的几分之几?

2、他们共摆了拼图的几分之几?

指名列算式,说说你是怎么算出来的?

3、谁摆的多些?多几分之几?

指名列算式,说说你是怎么算出来的?

4、你还能提出什么问题?

三、丰收园

1、谈谈你学习这一单元的收获

2、评价一下你的小伙伴

教学反思:

通过这个综合的小练习,学生们进一步地巩固了所学习的知识,教学效果比较好。在教学中,也要适当增加一些练习,帮助他们巩固知识。

青岛版数学教案篇2

教学目标:

1、经历探索分数基本性质的过程,理解分数的基本性质。

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

教学重点:

运用分数的基本性质,把一个数化成指定分母(或分子)而大小不变的分数。

教学难点:

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

教学准备:

多媒体课件 长方形白纸、圆片,彩色笔等。

教学过程:

一、 创设情境,激趣导入

师:同学们,新的学期到来了,你们刚入校园时觉得我们学校都发生了哪些变化,(换了新课桌,有了新的洗手间,有了文化走廊,有了开心农场),说到开心农场,还有一个小故事,开学初,校长决定把这块地的三分之一分给四年级,六分之二分给五年级,九分之三分给六年级,四年级同学认为校长不公平,分给六年级的同学多而分给他们的少,校长听了,笑了,谁能根据自己的预习告诉老师校长笑什么?

生1:四、五、六年级分的地一样多。

生2:……

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知

1、小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2、汇报结果

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大 。

生5:……

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)

4、探索分数的基本性质。

师:三个年级分的地一样多,那么你们觉得、、 这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书 =)

生:分数的分子分母发生了变化分数的大小不变。

师:请同学们从左往右仔细观察,第一个分数和第二个分数相比分子分母发生了什么变化?第一个和第二个,第二个和第三个呢?

生:分子分母同时乘2,……

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书 分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时 相同 0除外

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三、应用新知,练习巩固。

(一) 练一练

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二) 判断(抢答)

1、 分数的分子、分母都乘过或除以相同的数分数的大小不变。( )

2、 把的分子缩小5倍,分母也缩小5倍分数的大小不变。()

3、 给分数的分子加上4,要是分数的大小,分母也要加上4。( )

(四)测一测

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四、总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)

五、作业

练习册2、4题

板书设计:

分数的基本性质

给分数的分子分母同时乘或除以相同的数(0除外)分数的大小不变。

青岛版数学教案篇3

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除下载)

1、口算

6÷515÷323÷7

1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.215÷3=15

1.2÷0.3=424÷2=12

23÷7=3......2

31÷3=10......1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.()

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

a、下面各组数中,有约数和倍数关系的有哪些?

16和2140和2045和15

33和64和2472和8

b、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.()

b、6是倍数,3是约数.()

c、30是5的倍数.()

d、4是历的约数.()

e、5是约数.()

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2:12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10......

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:约数和倍数的意义)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,...的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3412162460

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.()1.8能被0.2整除.()

1.8是0.2的倍数.()1.8是0.2的9倍.()

(2)若a÷b=10,那么:

a一定是b的倍数.()a能被b整除.()

b可能是a的约数.()a能被b除尽.()

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

101336

2、在下面的圈里填上适当的数.

六、板书设计

约数和倍数的意义

探究活动

青岛版数学教案篇4

教学目标:

1.会解决有关百分数的简单实际问题,体会百分数与现实生活的密切联系。

2.在解决实际问题过程中,理解百分数化成分数、小数的必要性,会解决有关百分数的简单实际问题,能正确将百分数化成分数、小数。 3.体会百分数与现实生活的密切联系。

教学重点:

能正确将百分数化成分数、小数。

教学难点 :

体会百分数与现实生活的密切联系

教学过程:

一、复习旧知

(1) 五(1)班有50人,男生人数是全班人数的3/5,男生有多少人?

(2) 把小数化成百分数。 0.25 1.4 (3)把分数化成百分数 1/8 3/4

二、创设情景,激发兴趣

1、出示黄豆情景图,问:“从图中你了解到黄豆含有哪些成分?”(生答)

2、师:要求黄豆中蛋白质的含量算式怎样列?你能列式求出黄豆中其他成分的含量吗?

250× 36﹪ 250× 18.4﹪ 250×25﹪

为什么用乘法计算?

归纳出:求一个数的几分之几是多少用乘法计算,所以求一个数的百分之几是多少也用乘法。(板书)

师主要围绕以下问题展开讨论:

a.题中将百分数化成分数或小数的方法能否推广到其它的一个数乘百分数?

b.是不是所有的百分数都可以化成分数和小数?

c.如何将百分数化成分数或小数呢?(百分数化成小数有没有更简便的方法?)

通过举例验证,交流讨论,学生归纳出百分数化成分数或小数的方法。

师板书百分数化成分数或小数的方法,生齐读。

把百分数化成小数的方法:把百分数的小数点向左移动两位,同时去掉百分号

百分数化成分数:先把百分数化成分母是100的分数,能约分的约成最简分数

三、巩固练习,集体校对:

1.生任选250×18.4% ,250×25%两道中的一题来求出脂肪和碳水化合物的含量。集体订正并板书。

2.完成数学书70页1.3.4题。

四、知识拓展

小丽家这个月的总收入是3000元,买食品支出的的钱数占总钱数的60﹪,买文化用品支出的钱数占总钱数的1﹪,买玩具支出的钱数占总钱数的10﹪。小丽家这个月买食品,买文化用品,买玩具各支出多少元? 生解答后.

师:你认为小丽家的这个月支出合理吗?如果是你,打算怎样支出? 让学生感受到数学来源于生活,又服务于生活.

青岛版数学教案篇5

教学目标

1、在动手操作的过程中,让学生进一步认识分数,体会标准不同,分数表示的意义也不同。

2、在具体操作活动中,发展学生的数感,体会生活中处处有数学。

3、结合具体的情境,进一步体会“整体”与“部分”的关系。

教学重、难点:体会一个分数对应的“整体”不同,所表示的具体数量也不同。重点就是部分与整体的关系 教学过程:

活动导入

现在大家猜个谜语:母子两边分…… (学生回答:分数)

今天我们就再来认识分数 (板书:分数的再认识)

2、复习导入,出示图形:

提出复习要求:仔细观察这3个图形,说出这3个图中阴影部分是什么分数,它们各表示什么?

(1)图1表示把这个图平均分成了两份取了其中的1份,用分数2分之1来表示。

(2)图2表示把这个图平均分成了三份取了其中的1份,用分数3分之1来表示。

(3)图3表示把这个图平均分成了四份取了其中的1份,用分数4分之1来表示。

(通过让学生说分数,认分数,说分数含义的过程,了解学生以有知识的起点。)

3、他们的回答都非常准确,说明他们对以前的知识掌握的很扎实,老师想看看今天大家的学习效果,有信心吗?

二、活动引入新课学习

1、老师这儿有三份圆片,你们能从每一份中分别拿出全部的1/2吗?

提出观察要求:其他同学认真观察, 你们发现了什么现象?能提出问题吗?

(在这里要强调各自是把谁平均分了,学生分别拿出的是6片、4片和3片。)

( 学生可能的回答)

(1)都是1/2,怎么拿出的片数不一样?

(2)为什么三个同学拿的数目不同?

2、小组合作活动

提出活动要求:为什么他们三人都是拿全部圆片的1/2,拿出的片数却不一样多呢?

请大家先自己想一想,为什么会是不一样的,然后小组交流一下。

(1)学生借助学具独立操作

(2)小组交流

(3)学生代表汇报

师总结:同学们都认为每份的总片数不一样,所以三个同学拿出圆片的片数不同。那也就是整体“1”不一样了。

验证:现在请刚才的3位同学把所有的圆片拿出来,告诉同学们你们各自的数分别是多少,它们的1/2又是多少?这时要乘热打铁让学生举例说明什么是整体“一”。并举例说明,比如,一堆煤,一把铅笔,一个苹果等, 让学生自己总结出单位1或整体1 。(通过组织学生交流,在比较中初步体会“整体”与“部分”的关系,体会整体不一样多,所以分数表示的具体数量也不一样多,强调平均分 ,深化对分数的理解。)

3、总结归纳

(1)原来分数还有一个奇妙的特点,你对它是不是又有了新的认识?

(2)学生总结:(能表达出以下内容就可以)一份圆片的1/2表示的都是把一份圆片平均分成2份,其中的一份就是1/2。但由于分数所对应的整体不同,所以1/2表示的具体数量也不一样。单位“1”可以是一个物体,可以是一些物体,可以是一个计数单位 ,学生没学过 把多个物体看作“1”这部分应有所强调 ,这里可以让学生依据自己的生活经验和原有知识来理解单位一或整体一 。这里要让学生明确分数不像以前学的数那样很多情况下它不是一个具体的数字,而是两个数间的关系就可以,不一定要概括出什么语??

四、理解应用

1、为了表扬同学们对刚才所学知识的态度和效果,老师给班级读书角买了2本书。出示挂图:

师:淘气和笑笑都看了这本书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。

学生汇报:因为的书厚薄不同,所以两人看的页数也不同。(整体“1”不同,分数表示的量也不同。)

2、阅读教材34页的“画一画”

画出每个图形的4分之1 ,并在小组内交流,说说为什么这样做?(学生总结)

提问:为什么4个方格可以用4分之1表示,1个方格也可以用4分之1表示呢?

(学生可能的回答)

生a:把4个方格平均分4份其中的一份就可以用4分之1来表示。

生b:我把1个方格平均分成4份其中的一份也可以用4分之1来表示,只不过这个一份小一些。

五、巩固练习

1、指导阅读:书上第35页第1题,用分数表示涂色的部分。

独立完成,指名回答。 (简单复习分数的意义,可以根据实际情况让学生说出1~2个图形所表示的“整体”与“部分”的意义。)

2、学生独立在书中完成教材第35页第2题。(老师巡视检查)

3、出示教材第36页第5题,在交流中请学生说说理由。(本题主要是培养学生的估计与推理能力,发展学生数感。如果学生遇到理解困难,可以借助事先准备的图形和小棒在组内演示解决,最后由学生代表汇报演示小组讨论的结果。)

4、拓展延伸 小组合作完成36页第6题

思考:今天你学会了什么?(通过练习,巩固基本知识和技能,加深对分数意义的理解。培养学生的数感,体会数学与生活的联系。)

5、总结汇报:相同分数所表示的具体数量不一定相同,而这一切都取决于整体的大小。分数即表示一种关系又表示具体数量 , 分数只有带上单位才是一个具体的数 (引导学生梳理知识,体会用分数描述生活中事物的乐趣)

板书设计:

分数的再认识

相同分数所表示的具体数量不一定相同,而这一切都取决于整体的大小。

12片 1/2 6片 8片 1/2 4片 6片 1/2 3片 结合线段,数形结合

会计实习心得体会最新模板相关文章:

一年级数学教案下册人教版教案7篇

人教版七上数学教案8篇

三年级下册人教版数学教案7篇

人教版七上数学教案优秀6篇

四年级数学教案上册人教版教案6篇

一年级数学教案下册冀教版教案6篇

三年级上苏教版数学教案8篇

北师大版一年级下册数学教案8篇

一年级数学下册人教版教案8篇

冀教版小学一年级数学教案7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    134826

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。